
The MLN Manual
mln version 0.82b15

Kyrre M Begnum, John Sechrest

August 31, 2006

Contents

0.1 Quick Guide for the Impatient 3

1 Overview 4
1.1 Main Concepts . 4

1.1.1 Virtual Host . 4
1.1.2 Filesystem Template 4
1.1.3 Virtual Switch . 4
1.1.4 Virtual Networks . 5
1.1.5 Projects . 5
1.1.6 The MLN Language 5

2 Templates 7
2.1 Downloading Templates and Template Versions 8

2.1.1 Version numbering of Templates 9
2.1.2 Dealing with a slow download 9
2.1.3 Downloading and Registering templates manually . 9

2.2 Managing Templates . 9

3 Building Projects 10
3.1 mln build . 10
3.2 Non-Root Building . 11
3.3 Upgrading Running Projects 11

4 Starting and Stopping 12
4.0.1 Setting splay-time to slow down booting and shut-

ting down . 12
4.0.2 Choosing between xterm, screen, and none 12
4.0.3 What projects are running? 13

5 MLN Syntax 14
5.1 Language Features (superclasses and variables) 14

5.1.1 Keywords and values 16
5.1.2 Blocks . 16
5.1.3 Including other files 16

5.2 Syntax in depth . 17

1

5.2.1 Blocks . 17
5.2.2 global . 17
5.2.3 switch . 17

5.3 host . 18
5.3.1 Scalar Keywords . 18
5.3.2 Host blocks . 21

5.4 summary . 25
5.4.1 Inheritance . 25
5.4.2 Keywords . 26

6 The MLN daemon, Distributed virtual networks and Migration 27
6.1 Base Setup . 27

6.1.1 MLN Daemon setup 27
6.1.2 The Master server . 29

6.2 Writing a distributed project 29
6.3 Collecting status information 30
6.4 Migration . 30

6.4.1 Live Vs Cold migration 31

7 Setting Ownerships 33
7.0.2 Example: Starting as root, but running as someone

else . 34

Introduction

MLN is a powerful tool that can configure and administer virtual networks
for you. Key features of MLN include:

• Support for Xen or User-Mode Linux virtual machines,

• Root permissions not required, and

• Easy installation with pre-existing virtual machine templates.

For a quick start, take a look at Section 1. However, this document will
also provide in-depth explanations of the motivation for MLN as well as
its features and advantages.

2

0.1 Quick Guide for the Impatient

1. MLN depends on the following software:

• Perl

• uml-utilities

• bridge-utils

• screen

• sudo

2. Download MLN:

• wget http://mln.sourceforge.net/files/mln-latest.tar.gz

• tar zxf mln-latest.tar.gz

3. Run the interactive setup:

• cd mln-latest

• ./mln setup

• During the setup process, accept all defaults by simply hitting
Return at each prompt.

4. Build an example project:

• ./mln build -f examples/simple-network.mln

5. Start your new virtual network:

• ./mln start -p simple-network

6. Now you should have 3 xterms, one for each virtual host in the
simple-network project. Login as root to each one (no password)
and play!

7. Stop your new virtual network:

• ./mln stop -p simple-network

3

Chapter 1

Overview

The goal of this chapter is to explain the key concepts related to the inner
workings of MLN.

1.1 Main Concepts

1.1.1 Virtual Host

A virtual host consists of its own filesystem and runs in software on top of
your OS. MLN uses either User-Mode Linux (UML) or Xen and can use
different filesystems based on different Linux distributions. MLN will cus-
tomize the filesystem for the virtual host you wish to build based on your
high-level specification.

1.1.2 Filesystem Template

A template is a basic pre-customized filesystem for a virtual host. You can
download templates from the project homepage and choose which hosts
should be built from those templates. Templates differ in what distribu-
tion they are based on and how much software they contain. For example,
one template might be a user desktop environment with graphical login
and numerous productivity applications while another might be a small
firewall environment using busybox to replace applications and conserve
space.

1.1.3 Virtual Switch

MLN supports the virtual switch capability provided by UML. uml_switch
is simply a process that opens up a Unix-socket and listens to it. It ac-
cepts network packets on that socket and behaves just like a typical home-
network switch. Virtual hosts can connect to these switches. For Xen, the

4

switch is a so-called ethernet bridge-device that can connect several net-
work interfaces together like a switch.

1.1.4 Virtual Networks

Virtual hosts connected to virtual switches constitute a virtual network, which
mln is mainly all about. Many virtual hosts and switches make pretty large
networks and it is MLN’s job to configure and build these networks for
you. You can choose to build automatically functional networks or you can
build lots of virtual machines that are connected to switches and configure
networking on them by hand too if you like. It’s up to you.

Virtual networks can also be part of your real networks. Meaning that nei-
ther your physical hosts nor the virtual hosts can tell the difference, they
are simply on the same LAN.

1.1.5 Projects

One virtual network is one project. MLN can build and run several projects
at the same time. Sometimes it is sensible to keep them apart, other times
you might wish to connect them together. Projects are identified by their
name.

1.1.6 The MLN Language

You might wonder how you should tell mln what the virtual network should
look like? The answer is the mln configuration language. This language looks
much like a declarative programming language. The goal is that easy net-
works should be easy to write while complex networks should be possible
to write (and in some cases hopefully easy as well). Based on your needs,
you can omit or add parts to your project to make it do exactly what you
want. Sometimes the point is to build simple networks without much con-
figuration of the virtual hosts. This is a typical setting for student assign-
ments. So if you don’t want much, you shouldn’t have to write much. Here
is an example of a small network consisting of two machines and a switch.
If you understand this configuration without too much hassle, then the rest
of mln should be straight forward for you.

global {
project simple_network

}

switch lan {
}

5

host starfish {

network eth0 {
switch lan

address 10.0.0.1
netmask 255.255.255.0
}

}

host catfish {

network eth0 {
switch lan

address 10.0.0.2
netmask 255.255.255.0
}

}

6

Chapter 2

Templates

Every virtual machine’s filesystem is built from a template. There are cur-
rently five different pre-made templates available:

• Debian-3.0 (aka woody)
This is the smallest Debian-based template. It basically contains the
base-system. Nice for regular dummy machines and it is possible to
install new software on them using apt. It contains a dhcp client for
quick access to local networks.

This template is necessary for MLN build process even though the
resulting virtual machine is not based on this template.
Minimum build size: 75MB

• sarge-thick
built from Debian sarge (3.1), this template contains the sarge base-
system and some additional apps: tcpdump, bonnie++, vtun, hping2.
Minimum build size: 220MB

• ubuntu-server
The template is buildt from a base install of ubuntu breezy. It does not
contain much software other than a dhcp client. It is a good starting-
point for minimal servers.

• ubuntu-desktop
This is by far the largest template as it is 1.4GB large when extracted.
On the other hand, it contains all the software installed by a regular
Ubuntu Breezy install, including office tools. The special thing about
this template is that it is modified to start the Ubuntu Login screen
in a VNC session, enabling users to connect to the running virtual
machine using a VNC client and to use the graphical Ubuntu desktop.

7

• busybox
Busybox is a small linux distribution usually meant for floppies and
the like. It makes a nice router in virtual networks, because it takes
very little space. Complex things, like adding users and groups, are
not supported in this image.
Minimum build size: 25MB

• blimp
This is a typical LAMP fileystem with apache, mysql and PhP. Pre-
installed software is Drupal, Mediawiki and request-tracker.

The default host filesize is 250MB. You can set a smaller size, but MLN
will refuse building hosts where the assigned size is smaller then the actual
template.

2.1 Downloading Templates and Template Versions

MLN has it’s own download manager. It is launched by typing:

mln download_templates

The first thing the download manager does, is to fetch the latest list of avail-
able templates. It then prompts you for every available template and asks
if you want to download it. The default answer to that question is “No”, so
by pressing enter, you’ll skip to the next template. The presented template
will show the word “NEW!” if you have an older version or you don’t have
any version of it.

The templates are compressed and will be unpacked automatically when
downloaded.

The good thing with versions, is that you don’t have to specify what ver-
sion of the template you want. You actually don’t have to know anything
about the versions. When you say: sarge-thick.ext2, then mln will
use the newest version that you have automatically.

You can also specify exactly what template you want to use. If mln does
not find a version for your template, it will assume it is one of your own
templates and try to use it. So if you say template foobar.ext2, then
mln will assume you have a template called exactly that in your templates
directory.

8

2.1.1 Version numbering of Templates

The syntax of the version syntax is:
template-name-Vm.n.ext2

Where m and n are the major and minor version numbers respectively.

2.1.2 Dealing with a slow download

The MLN download manager fetches its templates form one particular
sourceforge mirror. This does not suit everyone, off course. If you feel
brave, then you are invited to edit the mln script and change the URL to
a mirror closer to you. You should find the variable in the beginning of
the script. But, we cannot guarantee, that you will find all templates on
all mirrors. We will update mln as soon as we figure out how we can let
sourceforge choose the mirror itself. Any pointers are welcome. As of ver-
sion 0.71 this is how it is done, however.

2.1.3 Downloading and Registering templates manually

If you have downloaded templates manually from a faster sourceforge.net
mirror or modified or even made one yourself, you can add it to MLN’s
template registry with this command:

mln register_template [-m ‘‘message’’] -t template

If the template-name contains a valid version tag, then MLN will take no-
tice of it, and you can use the template name in your configurations without
the version name in order to get the latest version of the template.

2.2 Managing Templates

MLN keeps track of its templates by storing them in your templates direc-
tory. It is possible to share the templates directory between several users,
since one only takes copies of the template. Just make sure every one has
read access to them. A list of all downloaded templates is stored in a file
called templates.list, also stored in your templates folder. If you want
to have a list of the templates mln knows of locally, you can write:

mln list_templates

There is currently no support for removing templates, so you will have to
remove them by hand and delete the corresponding line from the templates.list
file.

9

Chapter 3

Building Projects

As of version 0.73, MLN assumes that a non-root user build the projects.
In order for the build process to work, you will need to at least have the
default template, which is obtained during the setup process.

3.1 mln build

To build a project, specify the name of the project file you would have cre-
ated or would like to use.

mln build -f project-file.mln

The build command is rather simple, but a few extra steps can prevent
some frustrations later on. First, you need a project file that describes the
project you want to build. For rather complex networks it’s a good idea to
run a simulation first. The simulation just reads the project file and out-
puts the corresponding data structure. That way you can double-check if
something is misspelled or just simply wrong. To run a simulation, add the
option -s after the build command:

mln build -s -f project-file.mln

Here you can see how mln understands the project file. If you like what
you see, you can start the build process. The name of the project might cor-
respond to an already existing project and that will be overwritten when
you build this one. You will, however, be asked for permission to do so. If
you are sure that you want to overwrite any existing project with the same
name and don’t want to be bothered about it, add the -r option after the
build command.

10

mln build -r -f project-file.mln

3.2 Non-Root Building

Normally, you need to mount a filesystem in order to modify its contents.
root is the only user allowed to do that. MLN has a way to circumvent this.

The trick is to do everything we can as regular users, like copying and resiz-
ing the templates. Before the filesystem images are mounted, MLN boots
into a user-mode-linux system ourselves and, as root, mounts the images
from there and configure them.

Note, that one effect that not being root, is that you cannot build on behalf
of someone else. So the owner, sudo and group (see Syntax chapter)
keywords won’t work.

3.3 Upgrading Running Projects

MLN has, as of 0.71, the possibility to upgrade running virtual networks.
This is done the following way: When you build a new project, mln stores
a copy of the project file along with the project. You can then update your
own copy, by changing variables, adding/removing hosts and switches (as
long as you don’t change the name of the project). Then, you can run the
mln command for upgrading, and it will compare its own copy and your
new copy to figure out which virtual hosts need to be rebuilt. This com-
parison is quite complex, i.e. if you change a variable in a superclass, all
machines that inherit from it will have to be rebuilt, but not the ones that
inherit, but override the variable themselves. So a change in the syntax,
might not give a change in the semantics.
Why is it necessary to upgrade a running project? Why can’t you just re-
build? Important question. The answer is, that you can get far by just
rebuilding the whole project. But sometimes it is not what you want. You
don’t have to rebuild (and thereby delete the old filesystems) a project just
because you want to add a machine. If your system is running while you
want to upgrade, add the “-S” option, mln will boot the machines which
have been rebuilt or added. This is handy when users are active on your
virtual network while you upgrade.

mln upgrade -S -f new-project-file.mln

11

Chapter 4

Starting and Stopping

Every host and switch has their own start and stop scripts, similar to system
init scripts. When a project is started, all start-scripts are run in alphabetical
order. There is support for setting a boot order on each host. The default
position is 99 (last). Any number smaller then 99 will have precedence.
The stopping happens the same way, except that the stop scripts have the
reversed order, meaning 99 will be taken down first. So machines that boot
first will be taken down last.

mln <start | stop> -p project-name

Note: you don’t have to specify the path of the project, only its name. MLN
will look for that project in it’s project directory.

Hosts can also be started and stopped individually within a project like
this:

mln <start | stop> -p project-name -h hostname

4.0.1 Setting splay-time to slow down booting and shutting down

Starting a project with many hosts can tax a system and is often the most
resource consuming part of the virtual network. To ease the process, you
can issue a pause between every host to ease the pressure:

mln <start | stop> -s seconds -p project-name -h hostname

4.0.2 Choosing between xterm, screen, and none

Even though you decided on one way the vm should start, you can also set
this at boot-time using the -t type option. Currently, “screen”, “xterm”,
and “none” are supported. Example:

mln start -s -p project-name -t screen

12

4.0.3 What projects are running?

You can view the status of your projects with this command:

mln status

Your output will then look something like this:

################ MLN - Status #################
dmz-lan host choke-firewall down
dmz-lan host gateway down
dmz-lan host server down
dmz-lan host workstation down
dmz-lan switch dmz-switch down
dmz-lan switch lan-switch down
external_switch switch ext down
flab host choke1 down
flab host choke2 down
rh host dummy up
rh host redhat up
rh switch lan up

13

Chapter 5

MLN Syntax

The philosophy behind the syntax is that is should be easy to create sim-
ple networks and possible to create complex ones. The more features you
want to put into your project, the longer the project file gets. But it should
always be easy to read the project file and understand the functionality of
the network.
Every project needs to have a global block where the name of the project is
stated. This block looks like the following:

global {
project project_name

}

What follows can be one or more hosts and a set of switches if desired. A
project could simply be a group of machines not connected together but
all of them conencted to the lan. Let us have a look at the main language
features.

5.1 Language Features (superclasses and variables)

Writing simple networks does not require much work and you should be
able to have a good result after only a few lines. You might want to tweak
the network a bit, and start to add users and different root passwords to
the virtual hosts. One machine might need an extra network interface so
that it can function as a gateway for the rest of the virtual network, and
so you add a few more lines. Steadily your project file grows. To ease the
task of maintaining larger projects, we added support for inheritance and
variables. Through inheritance, you can specify a superclass for a group
of hosts. Every host that is set to inherit from that superclass will inherit
that configuration. Locally specified attributes will override the inherited
value. Variables can be used to make sure the same value is placed correctly

14

several places, like the ip address of your nameserver or the the template
filesystem you want to use.
You do not have to use these features in the project file, but when you are
writing large network projects, you fill find it much easier to correct errors,
typos and to add new features this way. Here is an exxample that uses both
inheritance and variables:

global {
project syntax-example
$standard_memory = 64M

}

superclass common {
free_space
memory $standard_memory

}

host one {
superclass common

}

Here, we define a variable “$standard_memory” already in the global block
and we use it in the superclass. Host “one” will inherit the settings from the
superclass. You can have hierarchies of superclasses, but a host can only
inherit from one superclass. In the next example, we override the global
variable and we also insert the variable into a text string:

global {
project syntax-example
$standard_memory = 64

}

superclass common {
free_space
$standard_memory = 128

}

host one {
superclass common
memory $[standard_memory]M

}

The resulting string is now “128M” for the host “one”. Notice how the
variable name is enclosed in brackets when inserted into text.

15

5.1.1 Keywords and values

The configuration is generally contructed from either blocks or keyword-
value pairs. A keyword-value pair is not written with any assignment op-
erator like = or :=, but straight forward:

memory 64M

Usually we put one keyword-value pairs separate lines for elegance, but
this is also possible:

memory 64M; term screen

5.1.2 Blocks

Blocks are enclosed by curly brackets. They are usually on the form of:

block {
line1
line2

}

Exceptions to this rule are hosts, switches and network interfaces, which
all have an extra parameter to them:

host one {
network eth0 {

address dhcp
switch lan
}

}

switch lan {
}

The reason for this is to keep compatability with earlier versions of MLN.
The reader of the plugin chapter later in this manual, will discover that
MLN creates sub-blocks out of these parameters when it builds its internal
data structure.

5.1.3 Including other files

It is possible to spread the configuration into separate files and to include
them into other configurations. In order to do so, you use the #include
keyword. It can be used anywhere in the configuration, and the MLN
parser will simply continue on the next file as if it was the same file:

#include /my/other/config.mln

16

5.2 Syntax in depth

5.2.1 Blocks

5.2.2 global

This block contains all the gloabal information for the project and is also
the place where you define variables and assign values to them. Possible
keywords and blocks are:

project <name>
The name of your project. If not specified, the build tool will prompt
you for a name.

beforeProjectStart { }
Run a list off commands before the project starts. Example:

global {
project xen_on_lan
afterHostsStart {

echo ‘‘You can connect to the virtuam machine using ‘screen -r xeno’
}

}

beforeHostsStart { }
Run a list of commands after the switches have started, but before the
hosts are started.

afterHostsStart { }
Run a list of commands after the Hosts have started.

afterProjectStart { }
Run a list of commands after the entire project has started.

5.2.3 switch

Each switch block defines one instance of a switch. Usually, only the name
of the switch is enough, but some extra features are available. The range
of features for a switch depends on wether it has User-Mode Linux or Xen
virtual machines connected to it. Mixing of the two on the same switch is
currently not supported, although it is not impossible to achieve. Possible
features are:

17

For User-Mode Linux

type <type>
This is the type of network component you want. The uml_switch
has the opportunity to act as a hub. This will be enabled if you supply
type hub in the switch block. Default is a regular switch.

socket <path>
Every network component opens up a unix socket and listens on it.
The virtual machines will connect to that socket if they want to send
through that switch. You can specify that the socket should be placed
somewhere else, e.g. outside the projects directory. This is useful
when you want to connect different projects together.

tap <tap-device>
With this option, you can connect the switch to a tap device. If the
tap device is connected to a ethernet bridge on you computer, then
every virtual host connected to that switch will be on your LAN. See
the command enable_bridge for more information.

owner <user>
The owner of the socket for a switch.

group <group>
The group that owns the socket for a switch.

sudo <user>
The owner of the socket and process of a switch.

Xen

bridge <bridge_interface>
Usually, the switch will define a name for the bridge interface, but
you can override ig with this option.

5.3 host

The host block is the most complex part of the mln syntax. It is not nec-
essary to assign a value to each keyword, so you can get away with pretty
small blocks of code for simple hosts.

5.3.1 Scalar Keywords

swap <size>
This keyword adds a swapfile to the vm. Example:

18

swap 128M

owner <user>
The owner of this host’s filesystem image. Currently only for User-
Mode Linux.

group <group>
The group that owns this host’s filesystem image. Currently only for
User-Mode Linux.

cow_filesystem basename

Assign this host to use a copy-on-write filesystem with basename
as filesystem base for reading. Note: Copy-on-write filesystems are not
currently supported in Xen.

sudo <user>
Implies owner and assumes root is the one that runs the host’s start
script. The effect is that although it is started by root, the other user
owns the filesystem image and owns the process. Currently only for
User-Mode Linux.

size <size>
The size of the filesystem for this host expressed in megabytes and
with a trailing “M”. I.e 250M. Note, that this size needs to be larger
than the size of the template in order to make it fit in. Default value:
250M.

free_space
With this keyword you can set how much space should be added
to the template, giving you at least that amount of free space on the
host. This keyword will override size. There will always be residual
free space on the template to begin with, so the actual amount of free
space will be this much or more.

A special case is this: “free_space 0M”. The host will then end up
with the size of the template, giving you the smallest possible size of
that host.

term [xterm|screen|none]
This keyword describes how the virtual machine should start. It usu-
ally needs a terminal to which to connect its console. There are three
options here:

1. You start the machine in an xterm. The xterm will open when you
start the given machine but will terminate when you log out.

2. You start the machine in a backgrounded terminal using screen.
You can then connect to the machine’s console at your leisure using

19

the command screen -r hostname. This is the recommended op-
tion if you want the project to run for a while and/or have a lot of
machines.

3. For Xen-based machines, you can choose to have no terminal man-
ager by specifying term none. For non-Xen machines, mln reverts
to the default. This is possible since the Xen management command,
xm, incorporates the features provided by screen. To list virtual ma-
chines, use xm list, and to access a virtual machine use, e.g., xm
console myhost.myproject.

Default value: xterm. As of version 0.73, this value can be set at boot-
time too, using the “-t term” option with the start command. Exam-
ple:
mln start -t screen -p myproject

color <color-name> This keyword makes only sense if xterm is
the terminal used. It sets the color of that particular xterm when the
virtual machine starts. This helps distinguish the xterms. The back-
ground color is always black. Default front color is lightgrey.

root_password <encrypted password>
Specify the root password. Supply the encrypted variant of the pass-
word. No default.

template <template>
Specify what template you wics to build this host from. The template
needs to be downloaded AND registered beforehand.

nameserver <ip>
IP address of nameserver.

memory <amount of ram>
The amount of RAM memory for this host when it is started. This
amount is not fully used until necessary, meaning that the whole
amount is not locked at startup. Default 32M

boot_order <priority>
If you want any machines to start before someone else, assign them a
lower boot order. A value of 1 means highest priority. Several hosts
can have the same priority. Default value is 99, which is also the
lowest priority. Note that the shut down order is automatically de-
termined by the boot order. Machines that are booted first, are shut
down last.

superclass <name>
The superclass of this host. Superclasses are a way to gather infor-
mation about a class of machines. If the machine has a superclass, it

20

will inherit all variables from that class. A host can also overwrite the
keywords locally. Note that also superclasses can have superclasses
of their own, creating a hiearrchy where only the leaf nodes ar actual
hosts. Only Hosts are build.

kernel <path-to-kernel>
You use this if you want to specify a special home-grown UML ker-
nel for this virtual machine. Write the absolute path of the kernel to
avoid errors. Remember to add the modules_dir keyword too, if
you need to copy any modules. Example:

kernel /opt/uml/linux2.6.4

modules_dir <dir>
Copy the modules from this directory. Usually used together with the
kernel keyword. Example:

modules_dir /opt/uml/modules/2.6.4-1um

lvm [lvcreate options]
Please read the LVM chapter for an introduction on how to use LVM.

xen
Use the Xen virtual machine instead of the default User-Mode Linux.

5.3.2 Host blocks

modules
What modules are to be loaded ad boot time. The presence of this
block will copy all the available modules for the kernel into the filesys-
tem. The ones listed in the block will be written into /etc/modules.
So if you want to have modules, you at least need this empty block.
Example:

modules {
nat
tun
}

users
Add users to the virtual machine. You have to supply and encrypted
version of the password. The syntax is like this:

users {
name password [homedir] [uid]

21

.

.
}

The home directory and UID are optional. Adding users is not sup-
ported on the busybox filesystems.

startup
Commands that are to be run at each boot. They will be placed in
a bash script /etc/init.d/startup and this file is linked to from
/etc/rc2.d/S99startup. Example:

startup {
iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE
echo 1 > /proc/sys/net/ipv4/ip_forward
route add -net 10.1.1.0 netmask 255.255.255.0 gw 10.0.0.3
}

mount
This block contains all the other filesystems you wish to mount in ad-
dition to the root filesystem. These can be both images and folders
and can reside anywhere on the host machine. You can also choose
any mountpoint you like except for the root. Note, that these filesys-
tems will not be mounted during the building phase, meaning that
you cannot as of now copy any files into the filesystem or use it as
/home while you add users. We will address this issue in the next
versions, however. Example:

mount {
/disks/backup.ext2 /mnt/backup ext2 defaults
/folders/www-data /var/www hostfs ro
10.0.0.1:/my/mnt /mnt nfs defaults
}

The filesystems supported are decided by the virtual machine kernel.
“hostfs” for direct access to folders on the host are only supported
in User-Mode Linux. NFS is also possible, but it assumes that the
filesystem and the uml kernel has the appropriate software. The last
field, containing the options, can be omittet. In that case “defaults”
will be written in /etc/fstab.

network iface
Configure a network device. Example for DHCP:

22

network eth0 {
switch < switch-name | socket >

address dhcp
}

Static IP example:

network eth0 {
switch < switch-name | socket >

address x.x.x.x
netmask x.x.x.x

[broadcast x.x.x.x]
[gateway x.x.x.x]
[mac x:x:x:x:x:x]
[slirp [slirp path]] (for UML)
[bridge <bridge-name>] (for Xen)

}

If the MAC address of the interface is not specified, it will be gener-
ated randomly.

The simplest way to setup networking for a User-Mode Linux is us-
ing the slirp software package. It provides NAT-like acces to the
internet and supports UDP and TCP traffic (no ICMP). You need to
have slirp installed on your system. You can also download compiled
slirp binaries from the MLN site. Here is an example:

network eth0 {
slirp

}

An interface connected to a TUN/TAP device: (UML)

network eth0 {

tun_iface <iface_name>
tun_address <tun_address>
address x.x.x.x
netmask 255.255.255.252

[broadcast x.x.x.x]
gateway <tun_address>

}

23

This last example makes a point about the nature of the TUN/TAP
connections. They involve only two addresses, and you get away
with a much smaller netmask. It also a good idea if the gateway for
the virtual hosts interface points the physical host side of the con-
nection. The TUN/TAP can be called whatever you want, and it is
enabled and destroyed automatically by mln if started and stopped
by root. In order to utilize this functionality but still run the host as a
different user, see the owner and sudo keyword.

Connecting a Xen host to the network is particlary easy, because youa
re most likely already root and the xend daemon has set up the proper
requirements for you. If you omit both the switch and the bridge
from a hosts network interface, then MLN will assume that it should
be connected to the “xenbr0” bridge. This bridge device is set up by
xend 3.0.1 and later and is connected to your lan already. Here is one
such host:

host one {
network eth0 {

address dhcp
}

}

The interface settings can be changed to a static address if you do not
have a dhcp server on your lan.

files
Use this block to specify what files are to be copied into a virtual
host’s filesystem at boot time. The files you want to copy have to be
in the directory configured as your files-directory. If you are unsure
where that is, run mln write_config. Example:

files {
foobar /root/foobar 644
scripts/scpecial_script.sh /usr/local/rum-me.sh 755
}

Note that the first field is the path to the file you want to copy relative
to your files folder. The second field is where in the virtual machine’s
filesystem you want to put the file. The last field is the permissions
the file shall have.

groups
You can add groups and assign users to groups. The following ex-
ample will create a group called admin and assign the user jack to
it:

24

Block Type function
global
switch
host
superclass A special class

Table 5.1: The different 1. level blocks.

users {
jack lkjlkadlfasd

}

groups {
admin {

jack
}

}

5.4 summary

5.4.1 Inheritance

The most organized way to keep a consistent configuration is through su-
perclasses. A superclass is configured simply as a host, but it will not be
built into a VM. Other hosts can inherit the configuration from a superclass
by using the superclass keyword. Here is an example:

superclass common {
term screen

memory 64M

network eth0 {
netmask 255.255.255.0
gatway 10.0.0.1

}
}

host one {
superclass common
network eth0 {

address 10.0.0.2
}

}

25

host two {
superclass common
network eth0 {

address 10.0.0.3
}

}

In this example the hosts one and two inherit from the superclass common.

5.4.2 Keywords

26

Chapter 6

The MLN daemon, Distributed
virtual networks and Migration

If you have more than one server for virtual machine hosting, then there is
a chance you want to spread projects accross those servers but still manage
them from single commands. The MLN daemon is a way to achieve this.

The daemon runs as a process on each server and recieves instruction re-
garding MLN projects from one or more authorized sources. From the user
perspective, one writes the MLN project on one host, and builds it just like
before. MLN will then detect if the project is distributed and attempt to
contact the other servers and send them the project as well. The same goes
for starting/stopping/upgrgading and removal of projects. Another aspect
is the collection of status information in order to monitor serveral servers
and make decisions based on their free resources. The MLN daemon pro-
vides a specialized status command that lets the user see the ammount of
projects and virtual machines running on each server. For the servers that
use Xen, the status command collects output from the xm list command
and displays that as well. We will show examples of this later in this chap-
ter.

In this chapter we walk through the few steps involved in setting up the
MLN daemon and writing distributed projects.

6.1 Base Setup

6.1.1 MLN Daemon setup

Consider the following example: We have three servers, master, backend1
and backend2. The master is our main MLN server and has no need to run
the daemon, as all the MLN commands will be issued there. The servers

27

backup1 and backup2 are dedicated MLN servers which are controlled
mainly from the master and therefore need to run the MLN daemon. The
easiest way to transform an uninstalled machine into an MLN dedicated
server is through the specialized install CD, which you can find a link to
here: LINK MISSING. But any machine where MLN is installed can run
the mln daemon.

In MLN terms, a server that runs a part of a project is called a service_host.
It provides a service to the virtual machines, i.e keeping the filesystem and
letting it run.

Lets look at the necessary configuration. The MLN daemon does not allow
any connections by default, so we need to define the IP addresses of the
hosts we want to allow. This is done in the /etc/mln/mln.conf file on
each of the backend servers:

daemon_allow 128.39.73.10
daemon_allow 128.39.74.*

Here, we set that the host with IP address 128.39.73.10 and all host on sub-
net 128.39.74.* are allowed to connect to the daemons. Further, we need to
give the backends a necessary ID so that they understand which part of the
project is to be buildt on them. The ID is their service host tag, and will
be used when writing projects later. It has to be either an IP address or a
relsolve-able name. The most natural is to use their hostnames. Here is
how it would look on backend1:

service_host backend1.vlab.iu.hio.no

Lastly, we define the ammount of memory reseverd for the server itself.
This is not acted upon by the MLN daemon, but helps with the status out-
put to quickly see where there is resources to add more virtual machines.
For Xen users, the default reserved ammount is 192 MB. If the backend
is installed thorugh our specialized installer CD, the reserved ammount is
128MB.

daemon_max_memory 128M

Once this is added to the /etc/mln/mln.conf file, we can start the server
the following way (as root if you run Xen):

master:~# mln daemon

28

6.1.2 The Master server

There is little configuration needed on the machines that will send projects
to the service hosts. The first thing needed is a service_host tag here as
well because the projects will be spread out accross all three servers. In the
/etc/mln/mln.conf at master we set the following:

service_host master.vlab.iu.hio.no

Next we need to define that master should collect daemon status informa-
tion from the two backend servers when we issue the mln daemon_status
command. So we add the following two lines to the mln.conf file:

daemon_status_query backend1.vlab.iu.hio.no
daemon_status_query backend2.vlab.iu.hio.no
\begin{verbatim}

Here also, we set the ammount we would like to reserve for the server itself:

\begin{verbatim}
daemon_max_memory 192M

We are now ready to write a distributed project and build it.

6.2 Writing a distributed project

A distributed project is not much different from a regular one, except that
one uses the service_host tag on the hosts and switches to decide where
they shall be placed. Here follows a distributed project, where we place one
virtual machine on each service host:

global {
project dtest

}

superclass common {
xen
nameserver 128.39.89.10
network eth0 {

netmask 255.255.255.0
gateway 128.39.73.1
}

}

host one {

29

superclass common
network eth0 {

address 128.39.73.11
}
service_host master.vlab.iu.hio.no

}

host two {
superclass common
network eth0 {

address 128.39.73.12
}
service_host backend1.vlab.iu.hio.no

}

host three {
superclass common
network eth0 {

address 128.39.73.13
}
service_host backend2.vlab.iu.hio.no

}

Make sure the MLN daemons are running on all your servers before you
start the build. The project can be buildt with the usual command:

master:~# mln build -f dtest.mln

MLN will send the project to all other service hosts before doing the build
itself. That way, all the servers can do their share in paralell. Once the build
is done at the main server it will start query the other servers for their out-
put until everyone is done.

The project is started with the usual: mln start -p dtest.

6.3 Collecting status information

6.4 Migration

MLN supports migration of virtual machines from one service host to an-
other through the upgrade command. Lets say we have a third backend
server, backend3, and want to move one of the virtual machines over to it.
The way we do this is by making a copy of our original project file and edit
the service_host line for the particular host we wish to move. This is an
excerpt of that file:

30

host three {
superclass common
network eth0 {

address 128.39.73.13
}
notice how the next line has changed:
service_host backend3.vlab.iu.hio.no

}

Now, we issue the upgrade command from our main server. Note, that all
the involved servers need to have their MLN daemon running at this point.
Especially the two servers involed in the migration process:

master:~# mln upgrade -f dtest2.mln

The server, backend2, which is where the vm three is located prior to the
upgrade will shut down the vm and await contact from the new service
host. The server being the new service_host for the vm three will con-
tact the other server and fetch the compressed filesystem image. Once it is
transferred, it will do the other changes which migh be on the upgrade list.

6.4.1 Live Vs Cold migration

Xen supports live migration, meaning the ability to move a running virtual
machine from one location to another without shutting it down. For this
feature to work, one needs to have a shared network storage of the filesys-
tem so that both involved servers can access the filesystem simultaneously.
Further both servers need to be of the same CPU architecture and on the
same subnet.

MLN does at this version not support live migration. The method cur-
rently used, cold migration, means shutting the vm down and moving the
filesystem to the other location. This method might sound inferior to live
migrations promise of seamless migration and uptime, but there are som
benefits to MLN’s approach as well:

• The migration can be to any other location. No same subnet is re-
quired.

• One can change platform of the server, i.e go from a Intel-based server
to an AMD-based one.

• One can change virtualization platform and and system variables in
the same process. You could start out with a light-weight User-Mode
Linux VM and migrate it to a Xen virtual machine with more memory.

31

• It does not require shared network storage of the filesystem images.

Unless uptime is of the absolute importance, cold migration is a suitable
option for most.

32

Chapter 7

Setting Ownerships

MLN is able to set the ownership of virtual machines and switches, mak-
ing it possible to run your projects as someone else then root, even if you
are root when you build. This is recommended if you plan to have some
security on your projects. This is also handy if parts of the network are to
be owned by different users, typically in class.

There are three keywords you may use for this purpose: sudo, owner and
group.

• sudo user|uid
This keyword is used if you plan to run the host as a user account
that normally does not correspond to a human, or a special user. The
project is still started and stopped by root. The sudo command is
incorporated into the start-script of the host. The application sudo
has to be installed on your system for this to work.

Also, this may cause problems when the term for the host is set to
“xterm”. Users can’t normally open windows in others’ X sessions.

• owner user|uid
Here, the purpose is to build the host for somebody else. Building as
root is faster then as a regular user. With this keyword, you can build
a project where ownership is spread among several users. These user
can then start and stop those hosts themselves as long as their project
points to the same folder (this can be set with the -P dir option at
command time too).

• group user|uid
sets the group ownership on the filesystem image. This one is most
useful for switches that are started as root but you want write access
for other users that are in a special group too.

33

Switches that have external sockets but run as a specialized user need to
have write permission in the folder where the socket is stored. Further,
MLN does not create those users, they have to exist beforehand.

7.0.2 Example: Starting as root, but running as someone else

Part of the network setup is done in the actual start-script for a host, so
running the script itself as root can prove convenient.

global {
project own-test
}

switch lan {
group uml-net

}

superclass host {

sudo mln-user
group uml-net

term screen

network eth0 {
switch lan

netmask 255.255.255.0
broadcast 10.0.0.255
}

}

host te1 {
superclass host

network eth0 {
address 10.0.0.1
}

network eth1 {
tun_iface owtest
tun_address 192.168.0.1
address 192.168.0.2
netmask 255.255.255.252
gateway 192.168.0.1
}

}
host te2 {

superclass host

34

network eth0 {
address 10.0.0.2
}
}

In this example, the entire project is built and started as root, but the run-
ning instances will belong to the user called mln-user. One of the hosts,
te1, has an extra network interface connected to a tunnel device. This is set
up properly by MLN as long as the project is started as root.

The screen and the host processes will belong to mln-user and he can
connect to its console.

35

	Quick Guide for the Impatient
	Overview
	Main Concepts
	Virtual Host
	Filesystem Template
	Virtual Switch
	Virtual Networks
	Projects
	The MLN Language

	Templates
	Downloading Templates and Template Versions
	Version numbering of Templates
	Dealing with a slow download
	Downloading and Registering templates manually

	Managing Templates

	Building Projects
	mln build
	Non-Root Building
	Upgrading Running Projects

	Starting and Stopping
	Setting splay-time to slow down booting and shutting down
	 Choosing between xterm, screen, and none
	What projects are running?

	MLN Syntax
	Language Features (superclasses and variables)
	 Keywords and values
	 Blocks
	Including other files

	 Syntax in depth
	Blocks
	global
	switch

	host
	Scalar Keywords
	Host blocks

	summary
	Inheritance
	Keywords

	The MLN daemon, Distributed virtual networks and Migration
	Base Setup
	MLN Daemon setup
	The Master server

	Writing a distributed project
	Collecting status information
	Migration
	Live Vs Cold migration

	Setting Ownerships
	 Example: Starting as root, but running as someone else

